ScienceDaily (Aug. 21, 2012) ? Investigators at Nationwide Children's Hospital may have discovered a biological explanation for why low levels of oxygen advance spinal muscular atrophy (SMA) symptoms and why breathing treatments help SMA patients live longer. The findings appear in Human Molecular Genetics.
SMA is a progressive neurodegenerative disease that causes muscle damage and weakness leading to death. Respiratory support is one of the most common treatment options for severe SMA patients since respiratory deficiencies increase as the disease progresses. Clinicians have found that successful oxygen support can allow patients with severe SMA to live longer. However, the biological relationship between SMA symptoms and low oxygen levels isn't clear.
To better understand this relationship, investigators at Nationwide Children's Hospital examined gene expression within a mouse model of severe SMA. "We questioned whether low levels of oxygen linked to biological stress is a component of SMA disease progression and whether these low oxygen levels could influence how the SMN2 gene is spliced," says Dawn Chandler, PhD, principal investigator in the Center for Childhood Cancer and Blood Diseases at The Research Institute at Nationwide Children's Hospital.
SMA is caused by mutation or deletion of the SMN1 gene that leads to reduced levels of the survival motor neuron protein. Although a duplicate SMN gene exists in humans, SMN2, it only produces low levels of functional protein. This is caused by a splicing error in SMN2 in which exon 7 is predominantly skipped, lowering the amount of template used for protein construction.
Mouse models of severe SMA have shown changes in how genes are differentially spliced and expressed as the disease progresses, especially near end-stages. "One gene that undergoes extreme alteration is Hif3alpha," says Dr. Chandler. "This is a stress gene that responds to changes in available oxygen in the cellular environment, specifically to decreases in oxygen. This gave us a clue that low levels of oxygen might influence how the SMN2 gene is spliced."
Upon examining mouse models of severe SMA exposed to low oxygen levels, Dr. Chandler's team found that SMN2 exon 7 skipping increased within skeletal muscles. When the mice were treated with higher oxygen levels, exon 7 was included more often and the mice showed signs of improved motor function.
"These data correspond with the improvements seen in SMA patients who undergo oxygen treatment," says Dr. Chandler. "Our findings suggest that respiratory assistance is beneficial in part because it helps prevent periods of low oxygenation that would otherwise increase SMN2 exon 7 skipping and reduce SMN levels."
Dr. Chandler says daytime indicators that reveal when an SMA patient is experiencing low oxygen levels during sleep may serve as a measure to include SMA patients in earlier respiratory support and therefore improve quality of life or survival.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Nationwide Children's Hospital.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
- T. W. Bebee, C. E. Dominguez, S. Samadzadeh-Tarighat, K. L. Akehurst, D. S. Chandler. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Human Molecular Genetics, 2012; DOI: 10.1093/hmg/dds263
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/health_medicine/genes/~3/6gnujRMHyvk/120821162528.htm
Olympic Schedule 2012 NBC Olympics NBC Olympics schedule Alexa Vega 2012 Olympics Chad Everett London Olympics
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.